
Krushkal’s Algorithm 

• From a Graph G ,we add one (the cheapest 
one) edge so that it joins two trees together. 
These step is repeated until and unless it 
cover all the vertex 



2 

Kruskal’s algorithm 

Initialization 

 a. Create a set for each vertex v  V 

 b. Initialize the set of “safe edges” A  

  comprising the MST to the empty set 

 c. Sort edges by increasing weight 

a 

c 
e 

d 

b 
2 

4 5 

9 

6 

4 

5 

5 

F = {a}, {b}, {c}, {d}, {e} 

A =  

E = {(a,d), (c,d), (d,e), (a,c),  

       (b,e), (c,e), (b,d), (a,b)} 



3 

Kruskal’s algorithm 
For each edge (u,v)  E in increasing order 

while more than one set remains: 

 If u and v, belong to different sets U and V 

   a. add edge (u,v) to the safe edge set  

    A = A  {(u,v)} 

   b. merge the sets U and V 

    F = F - U - V + (U  V) 

 

Return A 

• Running time bounded by sorting (or findMin) 

• O(|E|log|E|), or equivalently, O(|E|log|V|) (why???) 



4 

Kruskal’s algorithm 

E = {(a,d), (c,d), (d,e), (a,c),  

       (b,e), (c,e), (b,d), (a,b)} 

Forest 

{a}, {b}, {c}, {d}, {e} 

{a,d}, {b}, {c}, {e} 

{a,d,c}, {b}, {e} 

{a,d,c,e}, {b} 

{a,d,c,e,b} 

A 
 

{(a,d)} 

{(a,d), (c,d)} 

{(a,d), (c,d), (d,e)} 

{(a,d), (c,d), (d,e), (b,e)} 

a 

c 
e 

d 

b 
2 

4 5 

9 

6 

4 

5 

5 



5 

• After each iteration, every tree in the forest is a MST of the 
vertices it connects 

 

• Algorithm terminates when all vertices are connected into 
one tree 

Kruskal’s Algorithm Invariant 



6 

Correctness of Kruskal’s 
• This algorithm adds n-1 edges without creating a cycle, so 

clearly it creates a spanning tree of any connected graph 
(you should be able to prove this).  

 

But is this a minimum spanning tree?  

Suppose it wasn't.  

 

• There must be point at which it fails, and in particular 
there must a single edge whose insertion first prevented 
the spanning tree from being a minimum spanning tree.  



7 

Correctness of Kruskal’s 

• Let e be this first errorful edge. 

• Let K be the Kruskal spanning tree 

• Let S be the set of edges chosen by Kruskal’s algorithm before 
choosing e 

• Let T be a MST containing all edges in S, but not e.  

 

 
 

 

K T 
S 

e 



8 

Correctness of Kruskal’s 

Proof (by contradiction): 

• Assume there exists some 
edge e’ in T - S, w(e’) < w(e) 

• Kruskal’s must have 
considered e’ before e 

K T 
S 

e 

Lemma: w(e’) >= w(e) for all edges e’ in T - S 
 

• However, since e’ is not in K (why??), it must have 
been discarded because it caused a cycle with some of 
the other edges in S. 

• But e’ + S is a subgraph of T, which means it cannot 
form a cycle                                 ...Contradiction 

 


